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Abstract and Keywords

This chapter surveys how the state of knowledge about the physical processes that cause 
extreme heat and the societal factors that determine its impacts can be used to better 
predict these aspects of future climate change. Covering global projections; event attribu­
tion; atmospheric dynamics; regional and local effects; and impacts on health, agricul­
ture, and the economy, this chapter aims to provide a guide to the rapidly growing body 
of literature on extreme heat and its impacts, as well as to highlight where there remain 
significant areas in need of further research.
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Introduction
Many lines of evidence converge on the conclusion that the heat extremes of the next fifty 
to one hundred years will be more severe, by any measure, than those of the past. As 
global mean temperatures increase, heat extremes and their impacts increase at an even 
faster rate, a consequence of pure statistics as well as a web of feedbacks involving at­
mospheric and cryospheric dynamics, ecological responses, and economic and social be­
haviors. This complexity means that there is much yet to discover about the changing be­
havior of heat extremes of particular kinds and under particular conditions, even if the 
overall picture is clear. The impacts of extreme heat on agriculture, health, productivity, 
and the environment, combined with the growing wealth and interconnectedness of the 
global population, mean that adapting successfully to the future will require more than 
just turning up the air conditioning. Understanding what hazards extreme heat presents, 
where these hazards will be located, and when they can be expected are therefore key 
pieces of knowledge, and climate scientists are tackling these questions with increasing 
determination and success. The results discussed here provide evidence for the benefits 
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Figure 1A  Projected changes in intensity of hot ex­
tremes in 2041-2060 with respect to 1986-2005 for 
multimodel-mean average changes across 25 CMIP5 
models for the RCP8.5 scenario.

Source: Fischer et al. 2013

of such research programs in preparing for a hotter and ever more human-managed 
world.

Global Projections
Multiple studies have established that extreme heat is increasing over nearly the entire 
globe (Coumou & Rahmstorf, 2012; Meehl & Tebaldi, 2004; Russo, Sillmann, & Sterl, 
2017). In the coming decades, the global land fraction with a high probability of occur­
rence of extreme heat is expected to continue to increase at a rapid rate (Sillmann, 
Kharin, Zhang, Zwiers, & Bronaugh, 2013). According to many studies, the most excep­
tional heat wave in the modern observational record occurred in Russia in 2010 (Bar­
riopedro, Fischer, Luterbacher, Trigo, & Garcia-Herrera, 2011; Russo, Sillmann, & Fisch­
er, 2015; Russo, Sillmann, & Sterl, 2017), perhaps rivaled only by the western European 
heat wave of 2003 (Coumou & Rahmstorf, 2012; Luterbacher, Dietrich, Xoplaki, Grosjean, 
& Wanner, 2004). According to Coupled Model Intercomparison Project Phase 5 [CMIP5] 
simulations, heat like that which characterized these events is expected to occur regular­
ly in the future, as the probability of occurrence of heat waves exceeding various extreme 
thresholds is a strong function of global mean temperature (Russo et al., 2017; Russo & 
Sterl, 2011; Sillmann et al., 2013). Under the most severe CMIP5 emissions scenarios, 
global climate projections show an approximately sixfold increase by 2100 in the number 
of annual nights and days with temperatures above the 1961–1990 90th percentile, ac­
companied by increases in annual maximum nighttime and daytime temperature of 6.7°C 
and 5.4°C respectively (Sillmann et al., 2013).
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Figure 1B  Probability distribution function of the 
land fraction (66◦S-66◦N) experiencing a certain 20-
year mean change in hot extremes in 2041-2060 rela­
tive to 1986-2005. Red lines mark individual CMIP5 
models and red shading the 5th to 95th percentile 
across the models for each bin. Likewise, blue lines 
show individual CESM-IC members and blue shading 
the respective inter-model range. Changes owing to 
internal variability are shown as gray shading, with 
the solid black line marking the mean. Twenty-year 
mean changes at each grid point are normalized by 
the interannual standard deviation of the annual ex­
treme index value for 1986-2005.

Source: Fischer et al. 2013

All heat-related climate extremes indices show a general increase in the coming decades. 
Consequently, heat waves are expected to become longer and more intense (Meehl & 
Tebaldi, 2004). These increases will also result in values above anything yet recorded. 
They are especially robust for regions where hot days occur in combination with high rel­
ative humidity, due to the strong dependence of apparent temperature on humidity (Mora 
et al., 2017a; Russo et al., 2017). In regions such as the midwestern and eastern United 
States, eastern China, northern Latin America, and southern Asia, high relative humidity 
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amplifies the effect of extreme heat that occurs under high-pressure systems (Conti et al.,
2005; Dematte et al., 1998; Fischer et al., 2012; Im, Pal, & Eltahir, 2017). The high health 
impacts of the Chicago heat wave of 1995 and the Shanghai heat wave of 2003 were in 
large part attributable to high relative humidity (Russo et al., 2017). Heat and humidity 
are expected to occur in such extreme combinations by the end of the century as to put 
into serious question the habitability of densely populated parts of the Persian Gulf and 
South Asia (Im et al., 2017; Pal & Eltahir, 2015).

Future extreme heat will have multiple and severe impacts, not least on human health, 
economic productivity, and ecosystems through the heightened risk of hyperthermia in 
humans and other endothermic animals (Crimmins et al., 2016; Sherwood et al., 2010; 
Sherwood & Huber, 2010). Due to the humidity and urban-heat-island effects across high­
ly density populated cities, it is there that future extreme heat is projected to reach its 
most severe values (Argüeso, Evans, Fita, & Bormann, 2014; Im et al., 2017; Mora et al., 
2017a).

Event Attribution and Time of Emergence
Extreme heat events are projected to become more frequent and intense around the 
world in the coming century. But, we can already observe and quantify the effects of an­
thropogenic climate change on extreme heat events occurring in today’s climate, and an­
swer questions like:

1. Did climate change alter the likelihood or intensity of this event?
2. When did the fingerprint of climate change first emerge for events like this, or 
when will it emerge in the future?

There is a growing area of climate science called event attribution that specifically seeks 
to answer questions of the first type. Climate simulations representing the world of today, 
including the human contribution to greenhouse gases and aerosols, are compared with 
climate simulations where those human contributions have been removed. If there is a 
statistically significant difference in the frequency or intensity of the extreme event in 
question between those two groups of simulations, then a probabilistic statement of the 
influence of climate change can be made (e.g., climate change doubled the likelihood of a 
given extreme heat event).

Event attribution is useful both in terms of increasing scientific understanding of how an 
event and the associated relevant processes have changed, and in communicating the ef­
fects of climate change to the public. In the last decade and a half there have been nu­
merous attribution studies of extreme heat events including the first event-specific attri­
bution study, which found that human-caused climate change at least doubled the likeli­
hood of the European record hot summer of 2003 (Stott, Stone, & Allen, 2004). Event at­
tribution analyses have since been conducted on other heat waves, such as in Russia in 
2010 (Dole et al., 2011; Otto, Massey, van Oldenborgh, Jones, & Allen, 2012; Rahmstorf & 
Coumou, 2011), and also shorter-duration smaller-scale heat extremes where the climate-
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Figure 2A  Median time of anthropogenic emergence 
and zonally averaged signal and noise across 23 
model simulations for highest daily maximum tem­
perature in boreal summer. Signal (red) is defined as 
the mean difference between 1989-2039 and 
1860-1910, and noise (black) is the standard devia­
tion for 1860-1910.

Source: King et al. 2015

Figure 2B  Median time of anthropogenic emergence 
and zonally averaged signal and noise across 23 
model simulations for highest daily maximum tem­
perature in austral summer. Signal (red) is defined as
the mean difference between 1989-2039 and 
1860-1910, and noise (black) is the standard devia­
tion for 1860-1910.

Source: King et al. 2015

change signal is harder to detect, such as the heat wave during the Australian Open ten­
nis tournament in Melbourne in 2014 (Black, Karoly, & King, 2015).

The results of event attribution studies are often misinterpreted, so clear communication 
of findings is vital. This can be achieved by scientists writing their own articles for the 
media and through working with journalists to tailor the message that needs to be deliv­
ered. The use of phrases such as “very likely” or “highly unlikely” to accompany quantita­
tive statements can aid the public in correctly interpreting the conclusions of event analy­
ses. For a fuller discussion of event attribution the reader is referred to several review pa­
pers on the topic (Easterling, Kunkel, Wehner, & Sun, 2016; Otto, et al., 2016; Stott et al., 
2016).

The second type of question can be answered by considering the “time of emergence” of 
extreme events. If our “real” and “counterfactual” sets of simulations are both transient 
(i.e., the climate reacts as human society continues to affect it), we can look backward or 
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forward in time and estimate when the statistically detectable human influence on a giv­
en extreme heat event first appeared or will appear in future.

Recent record-breaking hot summers in many regions of the world have been found to be 
both more likely to occur and more intense due to anthropogenic climate change. For ex­
ample, the record hot “Angry Summer” of 2012/13 in Australia was made at least 2.5 
times as likely by anthropogenic climate change (Lewis & Karoly, 2013). In addition, pre­
vious record hot summers in Australia, like 1997–1998, can also be attributed to human 
influences on the climate (King et al., 2016). It is harder to detect the anthropogenic in­
fluence in more localized heat extremes and shorter events, due to the greater natural 
spatiotemporal variability on these scales, so generally for these events the signal has yet 
to emerge from the statistical noise.

Analyses of heat waves and hot summers over recent decades and the past century show 
that human-caused climate change is already altering the likelihood and intensity of ex­
treme heat events. As the effects of climate change become more pervasive, the human 
influence on extreme heat will continue to increase and become clearer on shorter 
timescales and for smaller regions.

Dynamical Mechanisms
Evidence is mounting that, partly due to dynamical changes, midlatitude heat waves are 
intensifying more than what would be expected from only the thermodynamic warming 
effect induced by greenhouse gases (Horton, Mankin, Lesk, Coffel, & Raymond, 2016; 
Mann et al., 2017; Petoukhov, Rahmstorf, Petri, Schellnhuber, & Joachim, 2013). Recent 
heat waves in Russia in 2010 and Europe in 2015 and 2017 are exemplary. They were in­
tensified by anomalously persistent dynamics and concomitant land-atmosphere feed­
backs (Lhotka, Kysely, & Plavcová, 2018; Miralles, Teuling, van Heerwaarden, & De Arel­
lano, 2014). In Figure 1 we elaborate on how specific midlatitude circulation states favor 
heat waves. The following text describes why dynamical changes are expected; what 
changes have been observed; what changes are projected for the future; and how these 
changes affect heat wave genesis and persistence. We focus on the midlatitudes since ex­
treme heat there is much more driven by large-scale dynamics than is the case in the 
tropics.

Midlatitude heat waves are substantially more likely to occur during persistent high-pres­
sure systems (anticyclonic circulations) (Alvarez-Castro, Faranda, & Yiou, 2018; Horton et 
al., 2016; Jézéquel et al., 2018; Pfahl, 2014). Trends in the frequency of persistent anticy­
clones have sometimes been quantified using methods designed to capture “blocking 
circulations” (e.g. Barnes, Dunn-Sigouin, Masato, & Woollings, 2014), which refer to slow-
moving or stationary portions of the jet stream that result in a persistent anticyclone over 
a region (Altenhoff, Martius, Croci-Maspoli, Schwierz, & Davies, 2008), thus favoring 
heat-wave genesis. However, this approach is more statistically than physically based 
(Nakamura & Huang 2018; Scaife Woollings, Knight, Martin, & Hinton, 2010). More im­
portantly, blocking circulations are only one type of persistent circulation that favors 
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warm anomalies, particularly in the higher latitudes (Sousa, Trigo, Barriopedro, Soares, 
& Santos, 2018). Therefore, this review focuses on dynamical mechanisms. It is well es­
tablished that persistent anticyclones originate from a complex synergy between quasi-
stationary Rossby waves, jet streams (Duchez et al., 2016; Kennedy, Parker, Woollings, 
Harvey, & Shaffrey, 2016), and storm tracks (Lehmann and Coumou, 2015; Woollings, 
2010). Jet streams and Rossby waves in particular are strongly affected by large-scale 
temperature gradients (Totz, Petri, Lehmann, Peukert, & Coumou, 2019) (see Text Box).

Large-scale temperature gradients are changing over time due to the heterogeneous 
warming of the atmosphere (Barnes and Polvani, 2015; Oudar et al., 2017; Petrie, Shaf­
frey, & Sutton, 2015; Screen and Simmonds, 2013; Wang and Overland, 2012) (Figure 2), 
which provides the first-order reason to expect midlatitude circulation changes (Horton 
et al., 2016). Another arises from the projected strengthening of deep convection in the 
tropics (Lau and Kim, 2015). Figure 1a depicts this large-scale deep convection, which is 
part of the Hadley Cell. Both stronger convection and weaker meridional temperature 
gradients will broaden the branch of downward-moving air (i.e., expanding the subtrop­
ics), in a process known as Hadley Cell expansion (Adam, Schneider, & Harnik, 2014; Lau 
and Kim, 2015). Although this trend is robust in all seasons except summer (Hu, Tao, & 
Liu, 2013), the subtropical desiccation that builds up in winter and spring can exacerbate 
summer drought (Quesada, Vautard, Yiou, Hirschi, & Seneviratne, 2012), favoring 
warmer temperatures in the subtropics (Seneviratne et al., 2010).

The projected strengthening of deep convection will also cause more rapid warming in 
the tropics at high altitudes (Figure 2b), referred to as Upper Tropospheric Warming 
[UTW]. This will increase the equator-to-pole temperature gradient at high altitudes, 
thereby strengthening and shifting the jet streams and storm tracks poleward (Lorenz 
and DeWeaver, 2007; Oudar et al., 2017; Shaw et al., 2016). Arctic Amplification [AA], in­
duced largely by the ice-albedo feedback, refers to the more rapid Arctic warming in the 
lower troposphere (see Figure 2a). AA reduces the equator-to-pole temperature gradient 
at lower altitudes, thereby weakening and shifting the jet streams and storm tracks equa­
torward (Harvey, Shaffrey, & Woollings, 2014; Oudar et al., 2017; Vavrus et al., 2017). The 
direct CO  greenhouse effect will also lead to heterogeneous warming, with the dynami­
cal response being also a poleward shift of the jet stream and storm tracks (Ceppi, Zappa, 
Shepherd, & Gregory, 2018). Note that AA has an opposite dynamical effect compared to 
UTW and the direct CO  effect—the competition between these processes is known as the 
“tug-of-war” (Shaw et al., 2016). The timescale of the processes also differs, leading to dy­
namical responses that change over time (Ceppi et al., 2018). Additional changes in tem­
perature gradients are expected due to changes in land-sea temperature contrast (Dong, 
Gregory, & Sutton, 2009; Horton et al., 2016), snowmelt (Vavrus et al., 2017), and sea sur­
face temperature gradients due to changes in large-scale ocean circulation (Caesar et al., 
2018; Deng, Ting, Yang, & Tan, 2018; Haarsma, Selten, & Drijjfhout, 2015).

Text Box: Mid-latitude dynamics that favor heat waves

2

2
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Latitudinal differences in incoming solar radiation result in an equator-to-pole tempera­
ture gradient. The induced large-scale circulation creates a strong separation between 
subtropical, tropical, and polar air masses, causing temperature gradients to be strongest 
at the interfaces between these air masses. These, in turn, result in strong winds at high 
altitudes, leading to the formation of the subtropical and polar jet streams (Figure 1a). 
Especially at the polar front, the temperature contrast between subtropical and polar air 
is high. Thus, the latitudinal position of the polar jet, varying between 30  and 75 , has a 
large impact on surface weather conditions (e.g. temperature and precipitation), especial­
ly when the position of the jet stream is persistent (Hoskins and Woollings 2015; 
Mahlstein et al. 2012).

As schematically shown in Figure 1b, the polar jet stream displays wavy patterns that are 
the result of large-scale Rossby waves (also called ‘planetary waves’, with wavelengths 
longer than ~4000km). Rossby waves come in two types: ‘free’ Rossby waves are gener­
ated primarily by transient atmospheric instabilities, whereas ‘forced’ Rossby waves are 
induced by more spatially fixed forcings such as mountains, sea surface temperature pat­
terns, land-ocean temperature differences, or diabatic heating. The latter type can cause 
high-amplitude poleward excursions of the polar jet stream, which favors hot extremes 
(Screen and Simmonds 2014; Teng et al. 2013).

The aforementioned high temperature gradient at the polar front also provides energy for 
smaller-scale Rossby waves (with wavelengths shorter than ~2000km), which can lead to 
the formation of smaller rotating circulations termed eddies, known more colloquially as 
storms (O’Gorman 2010). The Atlantic and Pacific oceans show particularly strong eddy 
activity in the ‘storm track’ regions, which result from the contrast between warm ocean 
currents and cold continental temperatures. In summer, seasonally weak storm tracks 
carry less moist and cool air from oceans to land, thereby favoring heat build-up over 
land (Lehmann et al. 2014).

Like the aforementioned “tug-of-war,” there are competing and interacting processes that 
influence temperature gradients, which complicates the final dynamical outcome (Peings, 
Cattiaux, Vavrus, & Magnusdottir, 2017; Shaw & Voigt, 2015; Shaw et al., 2016). Accu­
rately simulating dynamical processes on a large scale (Haarsma et al., 2015; Lau & Kim, 
2015), and more so on a regional scale (Lhotka et al., 2018; Plavcová and Kysely, 2016; 
Sigmond, Kushner, & Scinocca, 2007), is difficult for global climate models. Furthermore, 
detection of dynamical changes is statistically difficult to detect due to the large internal 
variability of the climate system. Despite these aspects, robust circulation changes in 
summer are already detectable in our current climate and are generally expected to be­
come more pronounced in the future.

For example, over the recent (1979–2013) period, storm tracks have significantly weak­
ened 8 to 15 percent in summer (Coumou, Lehmann, & Beckmann, 2015), meaning that 
less cool and moist air is transported from ocean to land, favoring the buildup of hot and 
dry conditions (Lehmann and Coumou, 2015) (see Text Box). The weakening is attributed 
to the recent reduction in the equator-to-pole temperature gradient and is also seen in 

◦ ◦
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Figure 3A  The simplified large-scale circulation, de­
picting the sharp temperature contrast between sub­
tropical (orange arrows) and polar air (blue arrows), 
and the deep convection near the equator that re­
sults in descending air over the subtropics around 
30◦N, which suppresses cloud formation.

Source: Adapted from NASA Earth Observatory.

Figure 3B  The 2010 Russian heat wave and co-oc­
curring Pakistan flood was characterized by a persis­
tent (high-amplitude) wave pattern of the jet stream, 
together with diverted storm tracks (Lau and Kim 
2012). Such a combination is often referred to as a 
’blocking circulation’, as it impedes the usual west-
to-east flow for days or weeks at a time.

Source: Adapted from NASA Earth Observatory.

the weakening of the zonal (west-to-east) mean wind, which serves as a proxy for the jet 
stream (Coumou et al., 2015). How this weakening will affect quasi-stationary Rossby 
waves and persistent blocking is still fairly uncertain.



Projections and Hazards of Future Extreme Heat

Page 10 of 42

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: OUP-Reference Gratis Access; date: 06 September 2019

Figure 4A  Warming rates of regions that are warm­
ing faster (> 1) or slower (< 1) than the global mean 
temperature at 900 hPa in summer, e.g. dark red ar­
eas have warmed 3 times faster than global average.

Source: O'Gorman, 2010.

Figure 4B  Mean boreal-summer (JJA) temperature 
difference in ◦C of future (2080-2100) minus present 
climate (2000-2020) from CMIP3 climate model sim­
ulations. The zonal mean at different altitudes (pres­
sure levels) versus latitude is shown. Upper Tropos­
pheric Warming is clearly visible in the future cli­
mate.

Source: O'Gorman, 2010.

Future (end of the twenty-first century) projections of summer storm tracks also show a 
continued weakening over the Atlantic and Pacific Oceans (Chang, Guo, & Xia, 2012; 
Lehmann, Coumou, Frieler, Eliseev, & Levermann, 2014; Simpson, Shaw, & Seager, 2014; 
Zappa Shaffrey, Hodges, Sansom, & Stephenson, 2013). The projected Northern Hemi­
sphere summertime poleward shift in the polar jet is fairly robust over the Atlantic and 
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eastern United States (Brewer and Mass, 2016; Lorenz and DeWeaver, 2007; Simpson et 
al., 2014), which will cause climate regimes to shift accordingly (see Text Box).

The jet stream position can be nudged into forming persistent anticyclones by quasi-sta­
tionary Rossby waves (Screen and Simmonds, 2014; Teng, Branstator, Wang, Meehl, & 
Washington, 2013) (see Text Box). The frequency and amplitude of some Rossby waves 
have increased in recent decades (Coumou, Kornhuber, Lehmann, & Petoukhov, 2017; 
Coumou, Petoukhov, Rahmstorf, Petri, & Schellnhuber, 2014; Lee, Lee, Song, & Ho, 
2017), although this trend is not robust.

Importantly, the mean jet stream can also interact with forced Rossby waves, thereby cre­
ating coherent spatial wave patterns around the entire hemisphere, inducing alternating 
patterns of persistent high- and low-pressure anomalies called circumglobal wavetrains 
(Branstator, 2002; Branstator and Teng, 2017; Hoskins and Ambrizzi, 1993). Quasi-reso­
nant amplification [QRA] can be interpreted as a dynamical mechanism that promotes 
“extreme” circumglobal wavetrains. During QRA, a stationary free Rossby wave res­
onates in concert with a forced circumglobal wavetrain (see Text Box), thereby favoring 
the occurrence of persistent and high-amplitude excursions of the jet stream during cer­
tain background atmospheric states (Coumou et al., 2017; Kornhuber et al., 2017a; Korn­
huber, Petoukhov, Petri, Rahmstorf, & Coumou 2017b; Petoukhov et al., 2013). Ongoing 
Arctic Amplification, Hadley Cell expansion, and changes in land-sea temperature con­
trast appear to favor these background-state conditions, potentially explaining the in­
creasing QRA occurrences in recent decades (Coumou et al., 2014; Coumou et al., 2017) 
and the projected additional increase in the future (Mann et al., 2017).

Atmospheric dynamics are changing mainly due to heterogeneous warming of the climate 
and a more vigorous tropical convection. Dynamical changes can regionally either miti­
gate or exacerbate heat wave genesis substantially. Some evidence suggests that dynami­
cal changes are favoring more persistent heat waves in the midlatitudes (Coumou et al., 
2018; Horton et al., 2015; Lhotka et al., 2018; Mann et al., 2017; Pfleiderer and Coumou, 
2018), but uncertainties are large about this and not all studies have come to similar con­
clusions (Barnes et al., 2014; Cattiaux, Peings, Saint-Martin, Trou-Kechout, & Vavrus, 
2016; Horton et al., 2016; Screen and Simmonds, 2013).

Regional and Local Interactions

Current Land and Atmosphere Interactions

The exact workings of land and atmospheric interactions vary across regions. However, 
the overall processes in creating extreme heat events are similar. Over regions where soil 
moisture is high, periods of drought prior to summer can cause a dramatic increase in the 
likelihood of hot weather (Hirschi et al., 2011; Mueller and Seneviratne, 2012; Quesada, 
Vautard, Yiou, Hirschi, & Seneviratne, 2012). Over parts of Europe, increased drought 
severity is associated with longer heat waves (Hirschi et al., 2011), where the sensible 
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heat flux increases and the latent heat flux decreases (Alexander, 2011). This also re­
quires favorable synoptic conditions such as persistent or blocking high-pressure sys­
tems; otherwise, heat wave frequency is reduced, even if the preceding seasons were dry 
(Quesada et al., 2012). Conversely, preceding wet conditions greatly reduce the likelihood 
of this feedback. Over moisture-limited regions such as Australia, seasonal-scale dry con­
ditions have a heterogeneous influence on heat waves (Perkins, Argüeso, & White, 2015), 
where droughts make only the long heat waves longer, and mild heat waves warmer 
(Herold et al., 2016).

Future Projections in Land and Atmosphere Interactions

The influence of antecedent drought will likely continue to have a key role in future tem­
perature extremes (Dirmeyer et al., 2012; Seneviratne et al., 2006; Vautard et al., 2007). 
Drier local soils have been linked to regional “hotspots” of accelerated 21st-century 
warming in temperature extremes over Europe, North and South America, and southeast 
China (Donat et al., 2017). Future intensifying heat waves and warm seasons have also 
been linked with enhanced soil desiccation (Diffenbaugh, Pal, Giorgi, & Gao, 2007; 
Seneviratne, Lüthi, Litschi, & Schär, 2006). However, precise future directions of land 
surface changes and associated feedbacks are uncertain (Donat et al., 2017; Gibson, Pit­
man, Lorenz, & Perkins-Kirkpatrick, 2017), influenced by large variations in soil moisture 
trends across climate models (Lorenz, Pitman, Hirsch, & Srbinovsky, 2015). It is unknown 
whether land surface fluxes will exacerbate or weaken future heat waves, due to climate-
model deficiencies in simulating land surface and atmosphere interactions (Fischer, 
Lawrence, & Sanderson et al., 2011; Hirsch et al., 2014: Lorenz et al., 2015). Increased 
frequencies and intensities of heat-driving persistent highs are projected over some areas 
(Meehl and Tebaldi, 2004; Diffenbaugh and Ashfaq, 2010). However, there is little evi­
dence suggesting any change in the synoptic drivers of heat waves over Europe (Cattiaux 
Yiou, & Vautard, 2012; Schaller, Sillmann, Anstey, Fischer, Grams, & Russo, 2018) or Aus­
tralia (Cowan et al., 2014; Purich et al., 2014).
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Figure 5  Number of days per year with wet-bulb 
globe temperature minima (left bars) and maxima 
(right bars) exceeding the local current rural 99th 
percentiles. Information is averaged across all land 
grid points that contain an urban area. Blue bars 
show the exceedance of these values in a 1 x CO2 
simulation for rural (left) and urban (right) grid 
points, with red bars illustrating the exceedances for 
a 2 x CO2 simulation. Note the differing scale used 
for tropical Africa. Error bars denote sampling uncer­
tainty, i.e. the 95% confidence interval around the 
mean estimate, but do not take into account structur­
al or parameterization uncertainties.

Source: Fischer et al. 2012

Human-Modulated Land Surface Effects

By changing land surface use, human activity can influence the surface energy balance. 
Clearing from dense vegetation to farmland or urban environments or both dramatically 
reduces the amount of moisture available for evapotranspiration (Foley et al., 2005). This 
decreases the latent heat flux while increasing the sensible heat flux, thus driving local 
increases in the frequency and intensity of extremes (e.g., Coseo and Larsen, 2014). Re­
gionally, increased irrigation has dampened rising trends of observed hot temperatures 
over the United States (Mueller et al., 2016), and over China and India, where irrigation 
growth since the 1960s has been rapid (Lobell, Bonfils, & Faurès, 2008; Im et al., 2017). 
However, future projections from regional climate models indicate that the masking ef­
fect of irrigation on extreme temperatures will diminish in the coming decades, due to the 
intensification of anthropogenic climate change and the slowing of irrigation expansion 
(Lobell et al., 2008). Moreover, future increases in maximum temperatures may be exac­
erbated by reduced evapotranspiration from plants in response to enhanced carbon diox­
ide. A recent study has suggested that refining the stomatal conductance of plants in cli­
mate models to better match observations may result in heat waves being 4°–5°C warmer 
by the middle of this century, compared to current projections (Kala et al., 2016).

Urban Heat Island Effects

Urban heat islands [UHIs] result from heat generation and trapping within cities, and 
from the partitioning of this heat into sensible rather than latent forms (Argüeso et al., 
2014; Kanda, 2007). UHI magnitude is typically largest in the warm season, at night, and 
in calm conditions, though this varies as a function of background local climate (Mc­
Carthy et al., 2010; Zhou, Zhao, Liu, Zhang, & Zhu, 2014) and built-environment charac­
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Figure 6  Estimates of urban population growth be­
tween the years 2000 and 2050 for a number of glob­
al regions, with gray shading representing major 
populated areas in 2050 (>10,000 people per 0.5◦ 
latitude, longitude cell).

Source: McCarthy et al. 2010

teristics (Georgescu et al., 2013; Stone, Hess, & Frumkin, 2010). Interaction effects be­
tween heat waves and UHI in the midlatitudes increase urban temperatures by an addi­
tional 0.5°–2.0°C compared to non-heat-wave UHI (Oleson, Anderson, Jones, McGinnis, & 
Sanderson, 2015; Zhao et al., 2018). The limited tropical studies suggest positive UHI 
during the dry season (Lazzarini et al., 2013), whereas in arid subtropical regions, urban 
vegetation effects can result in daytime “cool islands” (Ooi, Chan, Subramaniam, Morris, 
& Oozeer, 2017). Combined heat-humidity “island” metrics are nearly always positive, 
however, with warmer urban temperatures dominating over lower relative humidity (Fis­
cher, Oleson, & Lawrence, 2012).

Urban extreme heat is a growing challenge, with annual maximum temperatures increas­
ing about 0.3°C per decade in megacities compared to 0.2°C globally (Mishra, Ganguly, 
Nijssen, & Lettenmaier, 2015; Papalexiou et al., 2018). Future spatial expansion of urban 
areas will strongly influence local and regional temperatures, especially on warm season 
nights, due primarily to large positive water vapor feedbacks outweighing those associat­
ed with clouds and soil moisture (Argüeso et al., 2014; Georgescu, Moustaoui, Mahalov, & 
Dudhia, 2013; McCarthy, Best, & Betts, 2010). Cities in the coastal Mideast and northern 
India will be the first to near or surpass the 35°C survivability limit of wet-bulb tempera­
ture, with serious but as-yet-uncertain consequences (Im et al., 2017; Pal and Eltahir, 
2015; Sherwood and Huber, 2010). Overall, urban heat stress will increase significantly 
more than in rural areas, particularly in the midlatitudes and tropics (Fischer et al., 2012; 
McCarthy et al., 2010).

Intraurban exposure to extreme heat varies considerably, with measurable health effects 
(Hass, Ellis, Mason, Hathaway, & Howe, 2016; Rosenthal, Kinney, & Metzger, 2014; Uejio 
et al., 2011). An increasing area of focus has been indoor temperatures, which are both 
higher and harder to regulate in urban housing (Quinn, Kinney, & Shaman, 2017; Sailor, 
2014). Extreme heat is also correlated with urban hazards such as severe air-pollution 
episodes and increased probability of power failures (Chapman, Azevedo, & Prieto-Lopez, 
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2013; Fischer and Knutti, 2013). The combination of UHI and air-conditioning waste heat 
will likely contribute to large increases in future cooling demand (Kolokotroni, Ren, 
Davies, & Mavrogianni, 2012).

Model simulations have provided support for the heat-mitigation benefits of street-level 
vegetation and green roofs, but these may also have unintended consequences like weak­
ened lake/sea breezes (Lynn et al., 2009; Sharma, Conry, Fernando, Hamlet, Hellmann, & 
Chen, 2016). Such city-planning-based heat-mitigation strategies have not yet been imple­
mented widely enough for their ultimate effects to be empirically tested.

SSTs and Teleconnections

Compared to land, atmospheric, and urban influences on heat waves, relatively little re­
search has been conducted on the influence of sea surface temperatures (SSTs). This is 
likely because SST influences on heat waves are implicitly linked with preconditional dry­
ing or certain circulation patterns or both. What research has been done is focused on in­
fluences of the Pacific Ocean.

The influence of Pacific SSTs is largely constrained to bordering regions (Kenyon and 
Hegerl, 2008). Over North America, the La Niña phase of El Niño/Southern Oscillation 
[ENSO] is associated with increased frequencies of warm temperature extremes and heat 
waves (Hoerling et al., 2013; Kenyon and Hegerl, 2008; Koster, Wang, Schubert, Suarez, 
& Mahanama, 2009). The mechanism is embedded within the drought associations dis­
cussed above (Hoerling et al., 2013). A Pacific tripole SST pattern with lead times of al­
most two months has also been associated with observed hot summer days over the much 
of the contiguous United States (Loughran, Perkins-Kirkpatrick, & Alexander, 2017; McK­
innon, Rhines, Tingley, & Huybers, 2016).

Over Australia, increased heat wave frequency over the northern and eastern regions is 
associated with El Niño (Perkins et al., 2015). Conversely, La Niña has been shown to in­
fluence heat waves in the southeast (Parker, Berry, & Reeder, 2014), due to enhanced con­
vection during the Asian/Australian monsoon (Parker, Berry, & Reeder, 2013). There have 
also been indications that local SSTs influence heat waves over southeast Australia 
(Boschat et al., 2015), although the underpinning mechanism is not clear. Some studies 
have suggested that warm SSTs contribute to European heat waves as well. For example, 
Mediterranean SSTs were anomalously warm before, during, and after the 2003 Euro­
pean heat wave, with a tripole pattern in the Atlantic intensifying throughout that sum­
mer (Black, Blackburn, Harrison, Hoskins, & Methven, 2004; Feudale and Shukla, 2011).

Aside from being limited in number, the above studies are constrained to observations. 
Thus, there is little understanding on how SSTs may continue to influence heat waves in 
the future, other than potential changes in the SST patterns themselves. While some stud­
ies report a change in SST patterns such as ENSO (e.g., Cai et al., 2014), no conclusions 
have been drawn on the effect on heat waves. A larger focus on how SSTs influence heat 
waves—both presently and in the future—is an area where future research could be con­
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centrated, as understanding the large-scale influences and linkages of SSTs and heat 
waves may lead to a better understanding of how they affect local-scale processes.

Health Impacts
Extreme heat poses a direct risk to human health (Basu & Samet, 2002; Davis, Hondula, 
& Patel, 2016; Kovats & Hajat, 2008; Mora, Counsell, Bielecki, & Louis, 2017b; Olsson et 
al., 2014). An optimum body core temperature of about 37°C and a metabolism that gen­
erates ~100 W of heat even while at rest, combined with the fact that an object cannot 
lose heat to a surrounding environment of equal or higher temperature, dictates that ex­
posure to air temperatures above 37°C can lead to body heat accumulation and a danger­
ous exceedance of the body core temperature (i.e., hyperthermia). However, lower air 
temperatures could also be dangerous when combined with high relative humidity, as 
high humidity prevents evaporation of sweat, which is the body’s primary cooling mecha­
nism. Given the interactive role of temperature and humidity in human thermoregulation, 
over 100 indices have been devised that combine both variables in some way (Blazejczyk 
et al., 2012), of which web-bulb temperature is among the most common. Several studies 
have demonstrated that web-bulb temperatures above 35°C (not far above the currently 
observed global maximum) are the “hard and absolute upper limit for human heat 
tolerance” (Matthews, 2018; Sherwood & Huber, 2010). The impact of humidity in body 
heat exchange is particularly important for tropical and subtropical humid areas as high 
air temperature during the daylight allows air to store more water vapor, but at night 
when temperature drops, the capacity of the air to hold water is reduced, thus increasing 
humidity. Under these conditions, the body can experience non-stop heat stress from high 
air temperatures during the day and high humidity at night.

A climatic change causes an impact only when a given system is sensitive to that change. 
Unfortunately, the human body is very sensitive to heat, raising serious concerns about 
the projected human health impacts of increases in frequency and intensity of heat 
waves. Mora et al. (2017b) reviewed the medical literature and found evidence for at 
least twenty-seven different physiological pathways in which heat exposure can damage 
the human body. A reduction in blood flow to critical organs (resulting from shunting of 
blood to the skin to maximize body cooling, called ischemia) and direct thermal damage 
of cells (called heat cytotoxity) can impair cell functioning in the brain, heart, kidneys, liv­
er, and can also break down cell membranes, increasing the permeability of organs to 
pathogens and toxins (Mora et al., 2017b). The breaking of cell membranes can lead to 
epithelial wounds and internal infection, in turn triggering an inflammatory response to 
facilitate movement of white blood cells. If hyperthermia persists, this positive response 
can become systemic, exacerbating organ leakage. These physiological responses, among 
others (Mora et al., 2017b), are interrelated such that dysfunction in one organ impairs 
others, causing a cascade of multiorgan failure; this often results in lengthy recovery 
times, permanent disabilities, and at times death (Aström, Bertil, & Joacim, 2011; 
Bouchama & Knochel, 2002; Hanna & Taiti, 2015; Leon & Helwig, 2010; Sherwood & Hu­
ber, 2010). Physiological sensitivity to heat is characteristic to all people, but may have 



Projections and Hazards of Future Extreme Heat

Page 17 of 42

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: OUP-Reference Gratis Access; date: 06 September 2019

Figure 7A  Mean daily surface air temperature and 
relative humidity during lethal heat events (black 
crosses) and during periods of equal duration from 
the same cities on randomly selected dates (that is, 
non-lethal heat events, where the red-to-yellow gra­
dient indicates the density of such events). The blue 
line is the support-vector-machine-calculated thresh­
old that best separates lethal and non-lethal heat 
events, and the red line is the 95% probability 
threshold; areas to the right of the thresholds are 
classified as deadly, those to the left as non-deadly.

Source: Mora et al. 2017

earlier onset among individuals with compromised thermoregulatory capacity (such as 
the elderly or the very young) and those frequently exposed to heat (e.g., due to working 
outside, doing strenuous exercise, etc.) (Aström et al., 2011; Bouchama & Knochel, 2002; 
Harlan et al., 2014; Kenny, Yardley, Brown, Sigal, & Jay, 2010; Leon & Helwig, 2010; 
Miyake, 2013; Varghese, John, Thomas, Abraham, & Mathai, 2005).
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Figure 7B  Percentage of human population exposed 
to climatic conditions beyond the 95%-probability 
deadly threshold (red line in left panel) for at least 
20 days in a year under various emission scenarios. 
Bold lines represent multimodel medians, black lines 
are reanalysis, and faded lines indicate projections 
for different Earth System Models. Time series have 
been smoothed with a 10-year-average moving win­
dow.

Source: Mora et al. 2017

While the climatic conditions that can cause hyperthermia have been increasing and are 
projected to continue to do so even with strong mitigation of greenhouse gases, the 
lethality of recent extreme heat waves has somewhat reduced, indicating the potential for 
human adaptation (Bassil & Cole, 2010; Basu & Samet, 2002; Kovats & Kristie, 2006; 
Petkova et al., 2014). This likely level of adaptation generates a large uncertainty for the 
quantification of human mortality or morbidity or both under projected climate change, 
but does not preclude the conclusion that outdoor conditions will become dangerously hot 
in the hottest and most humid parts of the world (Mora et al., 2017b). Contributing to the 
uncertainty is the fact that extreme heat is correlated with other environmental health 
risks, such as air pollution, whose occurrence may change significantly due to climatic 
changes as well as political, economic, and technological development pathways (Schnell 
& Prather, 2017).

Because of physiological constraints, human evolutionary adaptation to extreme heat will 
be limited (i.e., our rate of adaptation is unlikely to be able to match the forecast rate of 
temperature change) (Hanna & Tait, 2015). Most likely, any reductions in human mortali­
ty from extreme heat are likely to result from behavioral changes or considerable expen­
diture in technological adaptations or both to reduce heat exposure. These include ex­
panding the usage of air conditioning, upgrading electrical grids, improving heat warning 
systems, and modifying the energy-efficiency and heat-retention characteristics of build­
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ings and urban areas (Hanna & Tait, 2015; Sherwood & Huber, 2010). Such precautions 
would not be affordable for all, and, even among those who can afford them, a warming 
world will regularly “imprison” people indoors, with any system failure (such as a power 
outage) potentially resulting in disaster (Hanna & Tait, 2015; Sherwood & Huber, 2010). 
Even in the present climate, extreme heat regularly prompts warnings and advisories by 
meteorological and public health agencies. In the absence of legislation or other incen­
tives, preventative adaptation measures are likely to increase wealth-related impact dis­
parities, both within and between countries. The health impacts of future extreme heat 
are thus likely to be most severe in the tropical and subtropical countries which comprise 
most of the developing world.

Agricultural Impacts
Extreme heat is associated with reduced yields in several major global crops such as 
maize, soybean, and wheat. The European heat wave of 2003 caused yield reductions of 
up to 20 percent and excess livestock mortality (Ciais et al., 2005; Morignat et al., 2014; 
van der Velde, Wriedt, & Bouraoui, 2010), while export interruptions in response to the 
2010 Russian heat wave reverberated through global trade (Wegren, 2013; Welton, 2011). 
Extreme heat impacts on crops are globally costly and pose a mounting threat to global 
food security in a warming climate (Challinor et al., 2014; Porter and Xie, 2014).

High temperatures can impact crops through diverse mechanisms including reduction of 
net carbon assimilation due to elevated respiration, stomatal closure and water stress due 
to elevated vapor pressure deficit, and direct damage to vegetative and reproductive 
plant tissues (Bita & Gerats, 2013; Prasad et al., 2008; Rezaei, Webber, Gaiser, Naab, & 
Ewert, 2015a; Wahid, Gelani, Ashraf, & Foolad, 2007). Threshold temperatures for crop 
yield damage have been identified between 29° and 34°C (Lobell & Gourdji, 2012; Luo, 
2011; Schlenker & Roberts, 2009), with generally lower heat tolerance in species of tem­
perate origin such as wheat and barley than those of tropical origin like maize (Lobell & 
Gourdji, 2012).

Crop yield sensitivity to extreme high temperatures varies substantially across develop­
ment stages, with particular susceptibility during the reproductive phases, such as flow­
ering (Butler & Huybers, 2015; Cicchino, Rattalino Edreira, Uribelarrea, & Otegui, 2010; 
Deryng, Conway, Ramankutty, Price, & Warren, 2014; Gourdji, Sibley, & Lobell, 2013; 
Tashiro & Wardlaw, 1990). Uncertain future changes in the timing of extreme heat rela­
tive to shifting crop phenology due to mean warming could moderate or exacerbate dam­
age to crops (Rezaei, 2015b). Despite this, it is projected that warming overall will reduce 
net crop productivity (Deryng, et al. 2014; Rosenzweig, et al., 2014; Zhao et al., 2016).

Recent research has emphasized the importance of irrigation in mitigating extreme heat 
impacts on crops, for example by modulating local temperatures abiotically through evap­
orative cooling or by sustaining stomatal conductance and photosynthesis (Rezaei et al., 
2015a; Siebert, Webber, Zhao, & Ewert, 2017; Tack, Barkley, & Hendricks, 2017; Troy, 
Kipgen, & Pal, 2015; van der Velde et al., 2010; Zhang, Lin, & Sassenrath, 2015). Con­
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versely, elevated CO  can exacerbate heat extremes by reducing transpiration (Kimball, 
2016; Skinner, Poulsen, & Mankin, 2018), negating its yield benefit in soy (Gray et al., 
2016), although effects vary among crops and regions (Leakey, Bishop, & Ainsworth, 2012). 
These findings raise questions about the separability of yield impacts due to heat from 
those due to low moisture availability and support a holistic view of canopy thermody­
namics and physiology. Compounding moisture and heat stress on crops is especially 
salient in the context of changing dependence structure between rainfall and tempera­
ture (Chen et al., 2016; Kent et al., 2017; Zscheischler & Seneviratne, 2017). Increased ir­
rigation may help adapt cropping systems to a warmer climate (Jägermeyr et al., 2016) 
but is projected to be limited by freshwater availability across much of globe including 
South Asia and China (Elliott et al., 2014).

Relatively less attention has been paid to impacts of extreme heat on livestock; regionally 
important staple crops such as tubers and millets; and non-staple crops such as legumes, 
pulses, and vegetables (Bishop-Williams, Berke, Pearl, Hand, & Kelton, 2015; Iizumi et al.,
2014; Morignat et al., 2014; Sultan et al., 2014; Savage, 1991; West, 2003; Wolf, Olesins­
ki, Rudich, & Marani, 1990;). Such crops merit more attention as they provide an impor­
tant nutritional complement to staple carbohydrates and may prove instrumental in cli­
mate-adaptive cropping systems.

Economic Impacts
There is increasing evidence that temperature extremes are damaging to economic activi­
ty, from individual productivity to macroeconomic outcomes. Using within-country com­
parisons, annual average temperatures above 13°C have been shown to be associated 
with lower overall economic production on the national level, and microeconomic studies 
have provided evidence that most of these declines are driven by the number of extreme­
ly hot days (Burke, Hsiang, & Miguel, 2015). Much of the developing world experiences 
average temperatures above this range, meaning increasing temperatures are particular­
ly damaging there. Under an unmitigated climate-change scenario, economic output in 
the tropics and subtropics is projected to be reduced 25–75 percent relative to a no-cli­
mate-change scenario (Burke et al., 2015). Poorer countries also experience larger de­
clines in economic production for a given increase in temperature compared to wealthier 
countries, meaning that existing income disparities in the world will likely be worsened, 
but also that economic development has the potential to mitigate some of the damages 
(Dell, Jones, & Olken, 2012).

In the United States, economic impacts of climate on various sectors have been extensive­
ly studied. Temperatures above 30°C can cause significant losses in worker output per 
hour, as well as total hours worked (Hsiang et al., 2014). Workers in “highly exposed” sec­
tors such as agriculture, construction, and manufacturing decrease their time spent 
working by 9–13 percent, while workers in less-exposed sectors decrease by 3–4 percent 
(Zivin & Neidell, 2014). There is little evidence that this missing work is made up on oth­
er days, meaning that the potential output of these workers is probably lost. As develop­

2
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ing economies transition from agriculture and industry to services, these highly exposed 
sectors rely less on manual labor and also become less important to overall economic out­
put.

Across the rest of the world, our understanding of the processes determining economic 
losses due to increased temperatures are more limited. Preliminary studies have estimat­
ed that a day at 40°C decreases average time spent working by about thirty minutes com­
pared to a day at 27°C (Baker et al., 2017). While agricultural productivity decreases due 
to extreme heat are expected in both rich and poor countries, agriculture accounts for a 
much larger share of economic production in the less-developed world. Countries in sub-
Saharan Africa are expected to see yield losses of 10–20 percent by 2050 (Schlenker & 
Lobell, 2010), which could lead to drastic increases in food insecurity. Yield losses in the 
United States could reach 50 percent by 2100 in the areas where crops are currently 
grown. The extent to which adaptation to such conditions will reduce these damages is 
not well understood, but to date there have been no indications that agriculture or other 
sectors have become more economically resilient to extreme heat, in either developed or 
less-developed places (Burke & Emerick, 2016). While adaptation capacity may be limited 
in a given location, spatially reallocating production is one approach to mitigating the 
overall damage, particularly in agriculture (Costinot, Donaldson, & Smith, 2016). Another 
possible means of adaptation is to shift labor from agriculture to less-impacted sectors 
such as manufacturing (Colmer, 2017). While this may provide substantial benefits in a 
context where there are adequate opportunities for employment outside of agriculture, it 
also relies on the existence of a relatively open labor market, assumptions from which re­
ality often deviates significantly.

Energy costs are also expected to mount over the twenty-first century, with an increase of 
about 0.3 percent of GDP under unmitigated climate change (Auffhammer & Aroonrueng­
sawat, 2011). However, these estimates are made using current energy technologies, and 
thus do not account for changes in energy efficiency or sources. As air conditioners be­
come more widespread in middle-income countries, these will likely translate into large 
increases in electricity use, both due to higher temperatures and increasing incomes 
(Davis & Gertler, 2015), putting pressure on energy grids and making emissions targets 
more difficult to achieve. Air conditioning is also a key adaptation strategy for reducing 
the economic and mortality effects of extreme heat, so it will be important to increase 
electricity capacity where necessary, in concert with other mitigation and adaptation ef­
forts (Deschênes & Greenstone, 2011). Extreme heat can also affect key infrastructure 
like water supply and power grids; natural resources like forests; and societies writ large 
through economic instability and migration (AghaKouchak, Cheng, Mazdiyasni, & Farah­
mand, 2014; Bartos & Chester, 2015; Chapman, Azevedo, & Prieto-Lopez, 2013; Mueller, 
Gray, & Kosec, 2014). All of these associated indirect effects can have severe economic 
consequences on a variety of scales, but the linkages have not been well enough studied 
for firm conclusions to be drawn.
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Summary
Increases in extreme heat due to anthropogenic activity are becoming clearer, as global 
average temperatures continue to rise and the climate system adjusts accordingly. Feed­
backs are the subject of much ongoing work but are less definitively understood, as many 
of them are characteristically regional or local, while others are evolving in response to 
rapidly changing conditions (such as deforestation or the melting of Arctic sea ice). The 
most salient aspect of projected extreme-heat impacts, and especially challenging from a 
political perspective, is how they are highly regional in nature, with severe or life-threat­
ening impacts in some places sharply contrasting with benign impacts in others. Tropical 
and subtropical countries, though expected to experience the least absolute warming, will 
suffer large increases relative to their historical climatological range and the highest val­
ues of extreme heat overall. Future extreme heat will test the capacity for collective ac­
tion and adaptation of many (perhaps most) societies around the world, but developing 
ones are particularly vulnerable. By underscoring the confidence in the changes and the 
severity of the impacts, this chapter highlights the importance of taking seriously the 
prospect of more frequent and intense extreme heat in the decades to come.
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